organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,5-Bis(4-chlorophenyl)-3-phenylpentane-1,5-dione

Xue-Xia Mo,^a Zheng-Feng Xie^a* and Fang-Ming Liu^b*

^aKey Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, Xinjiang University, Urumqi 830046, People's Republic of China, and ^bChemistry Department of Hangzhou Teacher College, Hangzhou 310012, People's Republic of China Correspondence e-mail: xiezhf72@yahoo.com.cn, fmliu859@sohu.com

Received 19 April 2007; accepted 24 April 2007

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.095; data-to-parameter ratio = 17.8.

The title compound, $C_{23}H_{18}Cl_2O_2$, is the reaction product of a Michael addition. The two chlorophenyl rings are almost perpendicular to the phenyl ring.

Related literature

For related literature, see: Emori et al. (1998); Qian & Widenhoefer (2003); Sasai et al. (1994); Murai et al. (2000); Wang & Shen (1999); Wang et al. (2005).

Experimental

Crystal data

C23H18Cl2O2 $M_r = 397.27$

Monoclinic, $P2_1/c$ a = 15.5591 (4) Å

b = 10.7610 (3) Å c = 11.6784 (3) Å $\beta = 101.616 \ (1)^{\circ}$ V = 1915.28 (9) Å³ Z = 4

Data collection

Rigaku R-AXIS SPIDER
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\min} = 0.790, \ T_{\max} = 0.984$
(expected range = 0.727 - 0.906)

Refinement

S = 1.02

 $R[F^2 > 2\sigma(F^2)] = 0.036$ 245 parameters $wR(F^2) = 0.096$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.55 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$ 4359 reflections

Mo $K\alpha$ radiation $\mu = 0.35 \text{ mm}^{-1}$

 $0.58 \times 0.42 \times 0.28$ mm

18363 measured reflections 4359 independent reflections

4090 reflections with $I > 2\sigma(I)$

T = 153 (2) K

 $R_{\rm int} = 0.018$

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge financial support from the the National Natural Science Foundation of China (No. 20562011).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2349).

References

Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.

Emori, E., Arai, T., Sasai, H. & Shibasaki, M. (1998). J. Am. Chem. Soc. 120, 4043-4044.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Murai, T., Suzuki, A., Ezaka, T. & Kato, S. (2000). Org. Lett. 2, 311-313.

Qian, H. & Widenhoefer, R. A. (2003). J. Am. Chem. Soc. 125, 2056-2057.

Rigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan

Sasai, H., Arai, T. & Shibasaki, M. (1994). J. Am. Chem. Soc. 116, 1571-1572. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Wang, Q. L. & Shen, F. J. (1999). Experiments in Organic Chemistry, 2nd ed., p. 191. Beijing: Higher Education Press.

Wang, W., Li, H. & Wang, J. (2005). Org. Lett. 7, 1637-1639.

supplementary materials

Acta Cryst. (2007). E63, o2804 [doi:10.1107/S1600536807020405]

1,5-Bis(4-chlorophenyl)-3-phenylpentane-1,5-dione

X.-X. Mo, Z.-F. Xie and F.-M. Liu

Comment

The Michael addition is one of the most important C—C bond forming reactions employed in organic synthesis (Qian & Widenhoefer, 2003). In recent years, the catalytic asymmetric Michael addition promoted by chiral metal complexes has been recognized as an efficient method for carbon-carbon bond formation (Emori *et al.*, 1998). The asymmetric catalyzers of Michael reaction have metal catalyzers such as La₃(O-t-Bu)₉, Y₃(O-t-Bu)₈Cl, Y₅(O-i-Pr)₁₃O (Sasai *et al.*, 1994), lithium diisopropylamide (Murai *et al.*, 2000), and non-metal catalyzers that includes MacMillan's chiral imidazolidinone (Wang *et al.*, 2005). We synthesized 1,5-bis(4-chlorophenyl)-3-phenylpentane-1,5-dione with tetrabutylammonium bromide. The two chlorophenyl rings are almost perpendicular to the central phenyl ring.

Experimental

A mixture of 1-(4-chloro-phenyl)-3-phenyl-2-propylene-1-ketone (Wang & Shen, 1999) (1 mmol), 4-chloro-acetopnone (2 mmol) and tetrabutylammonium-bromide (0.1 mmol) was dissolved in toluene (5 mL). To this mixture was added 50% KOH (1 mL) and stirred at room temperature for 24 h. The reaction was quenched with water and extracted with ether (3 times with 10 mL). The combined organic layers were dried (Na₂SO₄), concentrated to furnish the crude product, which was purified by flash chromatography (yield 54%). M.p. 463 k. Analysis, found (calculated for $C_{23}H_{18}Cl_2O_2$): C 69.53 (69.55%) H 4.57 (4.53%) O 8.05 (8.11%). Crystals were grown from a mixture of ethyl acetate and petroleum ether by slow evaporation.

Refinement

H atoms were positioned geometrically, with C—H ranging from 0.95 - 1.00Å and $U_{iso}(H) = 1.2Ueq(C)$.

Figures

1,5-Bis(4-chlorophenyl)-3-phenylpentane-1,5-dione

Crystal data	
$C_{23}H_{18}Cl_2O_2$	$F_{000} = 824$
$M_r = 397.27$	$D_{\rm x} = 1.378 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 17167 reflections
a = 15.5591 (4) Å	$\theta = 3.1 - 27.5^{\circ}$
b = 10.7610 (3) Å	$\mu = 0.35 \text{ mm}^{-1}$
c = 11.6784 (3) Å	T = 153 (2) K
$\beta = 101.6160 \ (10)^{\circ}$	Platelet, colorless
$V = 1915.28 (9) \text{ Å}^3$	$0.58 \times 0.42 \times 0.28 \text{ mm}$
Z = 4	

Data collection

4359 independent reflections
4090 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.018$
$\theta_{\text{max}} = 27.5^{\circ}$
$\theta_{\min} = 3.1^{\circ}$
$h = -20 \rightarrow 19$
$k = -13 \rightarrow 13$
$l = -14 \rightarrow 15$

H-atom parameters constrained

Extinction correction: SHELXL97,

 $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0082 (11)

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0.004$

 $\Delta \rho_{max} = 0.55 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$

 $w = 1/[\sigma^2(F_0^2) + (0.0463P)^2 + 1.0487P]$

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.096$

S = 1.02

4359 reflections

245 parameters

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.06138 (3)	0.71183 (4)	0.28055 (3)	0.04330 (13)
Cl2	0.45939 (3)	-0.37752 (3)	1.07691 (4)	0.04019 (12)
01	0.27113 (7)	0.59521 (9)	0.82643 (9)	0.0334 (2)
O2	0.39430 (7)	0.23645 (9)	1.09861 (9)	0.0302 (2)
C1	0.14266 (11)	0.48713 (14)	0.55234 (12)	0.0345 (3)
H1A	0.1349	0.4028	0.5719	0.041*
C2	0.10076 (11)	0.53260 (15)	0.44387 (13)	0.0376 (3)
H2A	0.0637	0.4802	0.3898	0.045*
C3	0.11383 (9)	0.65468 (14)	0.41596 (11)	0.0290 (3)
C4	0.16723 (10)	0.73318 (14)	0.49289 (12)	0.0311 (3)
H4A	0.1761	0.8168	0.4719	0.037*
C5	0.20748 (9)	0.68735 (13)	0.60125 (12)	0.0274 (3)
H5A	0.2437	0.7407	0.6554	0.033*
C6	0.19580 (8)	0.56417 (12)	0.63229 (11)	0.0228 (3)
C7	0.24130 (8)	0.52038 (12)	0.75086 (11)	0.0230 (3)
C8	0.25264 (9)	0.38214 (12)	0.77148 (11)	0.0255 (3)
H8A	0.2932	0.3500	0.7231	0.031*
H8B	0.1952	0.3410	0.7448	0.031*
С9	0.28827 (8)	0.34624 (11)	0.89939 (11)	0.0214 (2)
H9A	0.3416	0.3976	0.9297	0.026*
C10	0.22093 (8)	0.37083 (11)	0.97502 (11)	0.0206 (2)
C11	0.13589 (9)	0.32426 (13)	0.94369 (12)	0.0277 (3)
H11A	0.1201	0.2751	0.8751	0.033*
C12	0.07355 (9)	0.34871 (15)	1.01146 (14)	0.0333 (3)
H12A	0.0159	0.3162	0.9889	0.040*
C13	0.09565 (9)	0.42023 (14)	1.11146 (13)	0.0310 (3)
H13A	0.0532	0.4375	1.1575	0.037*
C14	0.18007 (10)	0.46638 (13)	1.14393 (12)	0.0297 (3)
H14A	0.1957	0.5152	1.2128	0.036*
C15	0.24218 (9)	0.44168 (12)	1.07642 (11)	0.0255 (3)
H15A	0.3000	0.4736	1.0999	0.031*
C16	0.31568 (9)	0.20906 (12)	0.90226 (11)	0.0239 (3)
H16A	0.2621	0.1574	0.8823	0.029*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H16B	0.3503	0.1953	0.8410	0.029*
C17	0.36896 (8)	0.16484 (12)	1.01783 (11)	0.0229 (3)
C18	0.39015 (8)	0.02895 (12)	1.03035 (11)	0.0225 (3)
C19	0.43314 (9)	-0.01583 (13)	1.13895 (12)	0.0269 (3)
H19A	0.4482	0.0400	1.2029	0.032*
C20	0.45433 (9)	-0.14104 (13)	1.15504 (13)	0.0292 (3)
H20A	0.4831	-0.1714	1.2292	0.035*
C21	0.43236 (9)	-0.22036 (12)	1.06020 (13)	0.0278 (3)
C22	0.38999 (9)	-0.17912 (13)	0.95109 (13)	0.0294 (3)
H22A	0.3756	-0.2352	0.8873	0.035*
C23	0.36897 (9)	-0.05401 (13)	0.93699 (12)	0.0264 (3)
H23A	0.3397	-0.0243	0.8627	0.032*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0490 (2)	0.0551 (3)	0.02385 (18)	0.02066 (18)	0.00284 (15)	0.00384 (15)
C12	0.0380 (2)	0.02220 (18)	0.0565 (3)	0.00195 (13)	0.00033 (17)	0.00760 (15)
01	0.0477 (6)	0.0244 (5)	0.0251 (5)	-0.0049 (4)	0.0000 (4)	-0.0019 (4)
O2	0.0327 (5)	0.0267 (5)	0.0296 (5)	0.0024 (4)	0.0029 (4)	-0.0044 (4)
C1	0.0467 (8)	0.0272 (7)	0.0275 (7)	-0.0051 (6)	0.0025 (6)	-0.0022 (5)
C2	0.0452 (8)	0.0380 (8)	0.0261 (7)	-0.0040 (7)	-0.0013 (6)	-0.0055 (6)
C3	0.0296 (7)	0.0379 (7)	0.0201 (6)	0.0109 (6)	0.0068 (5)	0.0014 (5)
C4	0.0367 (7)	0.0281 (7)	0.0293 (7)	0.0030 (6)	0.0089 (6)	0.0051 (5)
C5	0.0305 (7)	0.0259 (7)	0.0256 (6)	-0.0019 (5)	0.0052 (5)	0.0006 (5)
C6	0.0254 (6)	0.0235 (6)	0.0207 (6)	0.0013 (5)	0.0076 (5)	-0.0010 (5)
C7	0.0264 (6)	0.0222 (6)	0.0216 (6)	-0.0013 (5)	0.0080 (5)	-0.0004 (5)
C8	0.0360 (7)	0.0209 (6)	0.0211 (6)	0.0007 (5)	0.0092 (5)	-0.0001 (5)
C9	0.0240 (6)	0.0194 (6)	0.0218 (6)	0.0009 (4)	0.0067 (5)	-0.0001 (4)
C10	0.0237 (6)	0.0178 (5)	0.0206 (5)	0.0039 (4)	0.0053 (5)	0.0039 (4)
C11	0.0260 (6)	0.0285 (7)	0.0285 (7)	-0.0002 (5)	0.0054 (5)	-0.0028 (5)
C12	0.0236 (6)	0.0373 (8)	0.0404 (8)	-0.0002 (5)	0.0097 (6)	0.0025 (6)
C13	0.0319 (7)	0.0332 (7)	0.0320 (7)	0.0096 (6)	0.0159 (6)	0.0073 (6)
C14	0.0374 (7)	0.0295 (7)	0.0231 (6)	0.0062 (6)	0.0086 (5)	-0.0012 (5)
C15	0.0260 (6)	0.0260 (6)	0.0246 (6)	0.0012 (5)	0.0053 (5)	-0.0005 (5)
C16	0.0258 (6)	0.0214 (6)	0.0250 (6)	0.0034 (5)	0.0062 (5)	-0.0011 (5)
C17	0.0196 (5)	0.0242 (6)	0.0261 (6)	0.0021 (5)	0.0075 (5)	0.0000 (5)
C18	0.0180 (5)	0.0238 (6)	0.0267 (6)	0.0008 (4)	0.0067 (5)	0.0012 (5)
C19	0.0239 (6)	0.0296 (7)	0.0268 (6)	0.0021 (5)	0.0044 (5)	0.0001 (5)
C20	0.0245 (6)	0.0316 (7)	0.0309 (7)	0.0021 (5)	0.0042 (5)	0.0071 (5)
C21	0.0216 (6)	0.0211 (6)	0.0406 (7)	-0.0001 (5)	0.0063 (5)	0.0053 (5)
C22	0.0281 (6)	0.0231 (6)	0.0356 (7)	-0.0015 (5)	0.0031 (6)	-0.0022 (5)
C23	0.0254 (6)	0.0247 (6)	0.0276 (6)	0.0006 (5)	0.0020 (5)	0.0011 (5)

Geometric parameters (Å, °)

Cl1—C3	1.7393 (14)	C11—C12	1.3949 (19)
Cl2—C21	1.7441 (14)	C11—H11A	0.9500
O1—C7	1.2156 (16)	C12—C13	1.383 (2)

O2—C17	1.2204 (16)	C12—H12A	0.9500
C1—C6	1.3899 (19)	C13—C14	1.384 (2)
C1—C2	1.392 (2)	C13—H13A	0.9500
C1—H1A	0.9500	C14—C15	1.3904 (19)
C2—C3	1.378 (2)	C14—H14A	0.9500
C2—H2A	0.9500	C15—H15A	0.9500
C3—C4	1.382 (2)	C16—C17	1.5115 (18)
C4—C5	1.3849 (19)	C16—H16A	0.9900
C4—H4A	0.9500	C16—H16B	0.9900
C5—C6	1.3956 (18)	C17—C18	1.4997 (17)
С5—Н5А	0.9500	C18—C19	1.3952 (18)
C6—C7	1.4986 (17)	C18—C23	1.3963 (18)
С7—С8	1.5115 (17)	C19—C20	1.391 (2)
C8—C9	1.5345 (17)	C19—H19A	0.9500
C8—H8A	0.9900	C20—C21	1.386 (2)
C8—H8B	0.9900	C20—H20A	0.9500
C9—C10	1.5232 (16)	C21—C22	1.384 (2)
C9—C16	1.5351 (17)	C22—C23	1.3875 (19)
С9—Н9А	1.0000	C22—H22A	0.9500
C10-C15	1.3911 (18)	C23—H23A	0.9500
C10—C11	1.3930 (18)		
C6—C1—C2	120.53 (14)	C13—C12—C11	120.07 (13)
C6—C1—H1A	119.7	C13—C12—H12A	120.0
C2—C1—H1A	119.7	C11—C12—H12A	120.0
C3—C2—C1	119.08 (14)	C12-C13-C14	119.47 (12)
С3—С2—Н2А	120.5	С12—С13—Н13А	120.3
C1—C2—H2A	120.5	C14—C13—H13A	120.3
C2—C3—C4	121.78 (13)	C13—C14—C15	120.38 (13)
C2—C3—Cl1	119.17 (11)	C13—C14—H14A	119.8
C4—C3—Cl1	119.04 (11)	C15—C14—H14A	119.8
C3—C4—C5	118.58 (13)	C14—C15—C10	120.95 (12)
C3—C4—H4A	120.7	C14-C15-H15A	119.5
С5—С4—Н4А	120.7	C10—C15—H15A	119.5
C4—C5—C6	121.13 (13)	C17—C16—C9	114.98 (10)
C4—C5—H5A	119.4	C17—C16—H16A	108.5
С6—С5—Н5А	119.4	C9—C16—H16A	108.5
C1—C6—C5	118.88 (12)	C17—C16—H16B	108.5
C1—C6—C7	122.65 (12)	C9—C16—H16B	108.5
C5—C6—C7	118.46 (12)	H16A—C16—H16B	107.5
O1—C7—C6	120.18 (12)	O2—C17—C18	120.65 (12)
01—C7—C8	121.40 (12)	O2—C17—C16	121.68 (12)
C6—C7—C8	118.35 (11)	C18—C17—C16	117.67 (11)
C7—C8—C9	114.24 (11)	C19—C18—C23	118.92 (12)
С7—С8—Н8А	108.7	C19—C18—C17	118.76 (12)
C9—C8—H8A	108.7	C23—C18—C17	122.32 (12)
С7—С8—Н8В	108.7	C20—C19—C18	120.97 (13)
С9—С8—Н8В	108.7	С20—С19—Н19А	119.5
H8A—C8—H8B	107.6	С18—С19—Н19А	119.5
C10—C9—C8	111.40 (10)	C21—C20—C19	118.37 (13)

supplementary materials

C10—C9—C16	112.02 (10)	C21—C20—H20A	120.8
C8—C9—C16	107.92 (10)	С19—С20—Н20А	120.8
С10—С9—Н9А	108.5	C22—C21—C20	122.23 (13)
С8—С9—Н9А	108.5	C22—C21—Cl2	118.24 (11)
С16—С9—Н9А	108.5	C20—C21—Cl2	119.52 (11)
C15—C10—C11	118.11 (12)	C21—C22—C23	118.52 (13)
C15—C10—C9	121.02 (11)	C21—C22—H22A	120.7
C11—C10—C9	120.87 (11)	С23—С22—Н22А	120.7
C10-C11-C12	121.02 (13)	C22—C23—C18	120.98 (12)
C10-C11-H11A	119.5	С22—С23—Н23А	119.5
C12—C11—H11A	119.5	C18—C23—H23A	119.5
C6—C1—C2—C3	1.1 (2)	C10-C11-C12-C13	0.0 (2)
C1—C2—C3—C4	-0.2 (2)	C11-C12-C13-C14	-0.5 (2)
C1—C2—C3—C11	-179.88 (12)	C12-C13-C14-C15	0.3 (2)
C2—C3—C4—C5	-0.8 (2)	C13-C14-C15-C10	0.3 (2)
Cl1—C3—C4—C5	178.91 (10)	C11-C10-C15-C14	-0.65 (19)
C3—C4—C5—C6	0.9 (2)	C9-C10-C15-C14	178.53 (12)
C2—C1—C6—C5	-1.0 (2)	C10-C9-C16-C17	-68.81 (14)
C2-C1-C6-C7	179.07 (13)	C8—C9—C16—C17	168.21 (11)
C4—C5—C6—C1	0.0 (2)	C9—C16—C17—O2	-6.14 (17)
C4—C5—C6—C7	179.93 (12)	C9—C16—C17—C18	173.98 (10)
C1—C6—C7—O1	-164.12 (14)	O2-C17-C18-C19	5.18 (18)
C5—C6—C7—O1	15.91 (18)	C16-C17-C18-C19	-174.94 (11)
C1—C6—C7—C8	18.73 (19)	O2-C17-C18-C23	-174.32 (12)
C5—C6—C7—C8	-161.24 (12)	C16-C17-C18-C23	5.55 (17)
O1—C7—C8—C9	10.93 (18)	C23-C18-C19-C20	-0.41 (19)
C6—C7—C8—C9	-171.95 (11)	C17—C18—C19—C20	-179.93 (12)
C7—C8—C9—C10	69.29 (14)	C18—C19—C20—C21	0.5 (2)
C7—C8—C9—C16	-167.34 (11)	C19—C20—C21—C22	-0.3 (2)
C8—C9—C10—C15	-126.99 (12)	C19—C20—C21—Cl2	179.10 (10)
C16—C9—C10—C15	112.02 (13)	C20-C21-C22-C23	0.0 (2)
C8—C9—C10—C11	52.17 (15)	Cl2—C21—C22—C23	-179.46 (10)
C16—C9—C10—C11	-68.83 (15)	C21—C22—C23—C18	0.2 (2)
C15-C10-C11-C12	0.5 (2)	C19—C18—C23—C22	0.04 (19)
C9—C10—C11—C12	-178.68 (12)	C17—C18—C23—C22	179.55 (12)

Fig. 2

